

Opening Remark

Harish K Jain

President of Karnataka Drugs & Pharmaceuticals Manufacturer's Association (KDPMA)

Welcome everyone!

A bit about KDPMA

- Formed in the 1960s
- Focus on solving various problems of the pharmaceutical industry in the state of Karnataka.
- Engaged positively with various government departments authorities, such as, Drugs Control Department, Drugs Controller General of India, Central Excise, Commercial Taxes Department, State Excise Department, Karnataka State Pollution Control Board, etc.
- Regularly conduct knowledge sharing seminars for the benefit of our members
- Have MOU's with many universities and associations that bring value to members
- Lead delegations to many trade fairs and conferences in India and abroad

Our members

• A few of them are also PSCI members...

Addressing the challenge

5

Our partnership with PSCI

- MoU in place
- Have established a healthy relationship
- Exchange of PSCI promotional, other material and invite to key events.
- Push SME's to use the partnership to improve their capabilities

Karnataka Drugs And Pharmaceuticals Manufacturer's Association

PSCI – Adding value

- The post covid marketplace is going to be very different. We are already seeing the changes post covid from shortages in essential drugs to chips to the containers to carry our goods. ' Make at Home " is the mantra with most governments especially in essential commodities . In India, the Government has announced a series of Production linked incentives on Pharma, API's and KSMs to push for local production. Most other companies are doing this.
 - This will drive new alignment & disruption in existing supply Chain is also a big opportunity.
 - Expectations of global companies will increase .
 - PSCI plays a pivotal role to help companies adapt as they scale up or launch new facilities. This is
 - best time to adopt sustainable business practices and line up with PSCI as we start.
- Cost as a factor will slowly reduce putting pressure on companies to step up on other factors like sustainable manufacturing, best management practices and quality as these factors become important.
- Companies should use the knowledge bank that PSCI has to absorb it at the design stage and upgrade.

PSCI – Adding value

- Environment and health & safety have come to the forefront and high on the agenda of governments like India . There is no waiting for tomorrow anymore .Companies should make use of existing best practices to be prepared.
- Would like to recommend that PSCI to play a pivotal role and open up the training resources to non members (at a cost) or have a limited access member possibility for MSME's. This will help expand the reach of PSCI and also be of great value to the industry

CONTACT

For more information about the PSCI please contact:

PSCI Secretariat

Carnstone Partners Ltd Durham House Durham House Street London WC2N 6HG

info@pscinitiative.org

+44 (0) 7342 990241

About the Secretariat

Carnstone Partners Ltd is an independent management consultancy, specialising in corporate responsibility and sustainability, with a long track record in running industry groups.

9

ISO 45001:2018: Occupational Health & Safety Management System

Unravelling the Basics

SPEAKER BIO

- Name: Anupam Bhattacharyya, Idip-OSH, RSP
- Job Title: Principal Consultant
- Organization: ERM India Private Limited
- Contact: <u>anupam.bhattacharyya@erm.com</u>; M (+91-9582359446)

Anupam is presently working at the capacity of **Principal Consultant** based out of ERM's Kolkata office, India. Anupam has about 11 Years of demonstrated experience in assisting clients with wide range of HSE consulting and advisory services across industrial sectors in wide geographic regions including **South Asia** (India, Bangladesh, Nepal, Bhutan, Brunei), **Middle East** (UAE, Oman, Jordan) and **Africa** (South Africa, Ethiopia and Sierra Leone), USA & Australia (remotely).

Anupam specializes in the development and implementation of HSE Management System (ISO 45001, ISO 14001, IFC PS), Audits (275+ audits), EHS-DD, Phase I ESA, PSM Audits, Training services (1000 hours+), HSE Compliance Management, Safety culture transformation, BBS *etc*.

He has been engaged in development of HSE Management System for 25+ MNC client Sites (across sectors) and have conducted 60+ PSCI assessments for major Pharmaceutical companies in India.

AGENDA

Context Setting

What is ISO 45001:2018 and advantages

Migration from OHSAS 18001 to ISO 45001

ISO 45001:2018 Requirements: Outline

PSCI Expectations and relevance of ISO 45001:2018

Context Setting – Why ISO 45001:2018

- 2.3 million women and men around the world succumb to work-related accidents or diseases every year; this corresponds to over 6000 deaths every single day;
- Worldwide, there are around **340 million** occupational accidents and **160 million** victims of work-related illnesses annually;
- The corresponding loss of workdays accounts for almost 4% of the world's GDP, or some US\$3.2 trillion;
- Diseases related to work cause the most deaths among workers. Hazardous substances alone are estimated to cause **651,279** deaths a year;
- There are **860,000** occupational accidents every day, with consequences in terms of injuries;
- Every **15 seconds** a worker dies from a work-related accident or disease, and **153 people** experience a work-related injury.

Reference: ILO, World Congress on Safety and Health at Work

Context Setting – Why ISO 45001:2018

Key causes of workplace accidents:

- Failure to identify workplace safety hazards and risks/ Poor risk perception;
- Inadequacy of controls;
- Lack of management commitment and focus;
- Normalizing deviations;
- Cognitive biases: Optimism, Herding bias, Amnesia, Myopia *etc.;*
- Production over human safety;
- Lack of workers participation, motivation;
- Over reliance on contractors;
- Absence of monitoring and supervision;
- Failure to manage change;
- Cumbersome procedures: Safety only on paper;
- Absence of systematic approach to manage risk at workplace.

A step change with ISO 45001:2018:

- Provides a comprehensive Framework to manage H&S Risks at the workplace in a systematic manner;
- Usher in possibilities of reduced workplace incidents;
- Reduce downtime by minimizing disruption of the operations leading to increase in productivity;
- Enhanced Stakeholder's trust (Customer, Investor, Shareholders, employees)
- Lower insurance costs
- Foster management involvement & accountability;
- Establishing foundation of a strong Safety culture.

Context Setting – Why ISO 45001:2018

Occupational Health & Safety Management System

- Enable organizations to provide safe and healthy workplaces by preventing work-related injury and ill health,
- Continual improvement of OH&S performance;
- Fulfilment of legal requirements and other requirements;
- Achievement of OH&S objectives.

The journey from OHSAS 18001 to ISO 45001

ISO 45001 concentrates on the interaction between an organization and its working environment while OHSAS 18001 was focused on managing the occupational health and safety hazards and issues related to it.

- High Level Structure (HLS)
- Leadership & Management Commitment
- Worker Consultation & Participation
- **PROCESS** Approach
- **RISK based thinking**
- **Risk & Opportunity Management**
- Life Cycle Approach
- Needs and expectation from **Stakeholders**
- Proactive approach

PDCA – ISO 45001:2018

- 1. Scope
- 2. Normative references
- 3. Terms and definitions
- 4. Context of the organization
- 5. Leadership and worker participation
- 6. Planning
- 7. Support
- 8. Operation
- 9. Performance evaluation

10. Improvement

Anatomy of ISO 45001:2018

	PLAN		DO		CHECK	ACT	
4. Context of the organization	5. Leadership and workers participation	6. Planning	7. Support	8. Operation	9. Performance and Evaluation	10. Improvement	
4.1 Understanding the organization and its context	5.1 Leadership and commitment	6.1 Actions and address risks and opportunities	7.1 Resources	8.1 Operational and Planning Control	9.1 Monitoring, measurement, analysis and performance evaluation	10.1 General	
4.2 Understanding the needs and expectations of workers and other parties	5.2 OH&S policy	6.2 OH&S objectives and planning to achieve them	7.2 Competence	8.2 Emergency Preparedness Response	9.2 Internal Audit	10.2 Incident, Nonconformity and corrective actions	
4.3 Determining the scope of OH&S management system	5.3 Organizational roles, responsibilities and authorities		7.3 Awareness		9.3 Management review	10.3 Continual Improvement	
4.4 OH&S management system	5.4 Consultation and Participation of workers		7.4 Communication				
			7.5 Documented Information				

PSCI Assessment and relevance of ISO 45001:2018

	EXECUTIVE SUMMARY								
Overall findings Please check applicable box(es) and indicate the number of findings									
		Critical	Number of Criticals	Major	Number of Major	Minor	Number of Minor	No findings	Not reviewed
A	Management Systems								
в	Ethics								
С	Labor								
D	Environmental Protection								
E	Health & Safety Compliance and Risk Management								

PSCI Assessment and relevance of ISO 45001:2018

Q 1: Does the facility have any current ethics, labor, environment, **health and safety management system** accreditations, certifications, or awards?

Q 3: Does the facility assess ongoing compliance with Health, Safety, and Environment, Business Ethics issues, and Labor regulations? (Clause 9.1.2 of ISO 45001:2018)

Q 4: Does the facility have processes in place to enforce responsible business practices, aligned with the PSCI Principles, with their suppliers, i.e. Labour, Ethics, Environment, Health & Safety? (Clause 5.2 of ISO 45001:2018)

Q 6: Does the facility or company have a process to manage all changes (e.g. raw materials, processes, personnel non-GMP, facilities, etc.) (Clause 8.1.3 of ISO 45001:2018)

Q: 11: Does the facility or company have formal processes and procedures to assess the effectiveness of its labour, ethics and HSE (**Health, Safety** & Environment) practices, to identify and implement corrective actions and/or recommendations, and to track corrective actions? (8.1 of ISO 45001:2018)

PSCI Assessment and relevance of ISO 45001:2018

Q:47 - Does the facility have a written Health & Safety policy, procedures, and practices? (Clause 5.2, 8.1 of ISO 45001:2018)

Q:48 - Does the facility have any documented Health & Safety objectives and targets or goals for performance improvement, including metrics? (Clause 6.2.1 of ISO 45001:2018)

Q 50: Does the facility provide HSE (Health, Safety & Environment) training to employees (full-time, temporary, or contractor)? (Clause 5.4, 7.2 of ISO 45001:2018)

Q 58: Does the facility use any of the following processes for managing risks related to contractor activity onsite? (Clause 8.4.1.2 of ISO 45001:2018)

Q 65: Does the facility perform risk assessments for chemicals handled? (Clause 6.1.2 of ISO 45001:2018)

ANTI-TRUST STATEMENT

"While some activities among competitors are both legal and beneficial to the industry, group activities of competitors are inherently suspect under the antitrust/anti-competition laws of the US, UK and other countries in which our companies do business. Agreements between or among competitors need not be formal to raise questions under antitrust laws, but may include any kind of understanding, formal or informal, secretive or public, under which each of the participants can reasonably expect that another will follow a particular course of action or conduct. Each of the participants in this meeting is responsible for seeing that topics which may give an appearance of an agreement that would violate the antitrust laws are not discussed. It is the responsibility of each participant in the first instance to avoid raising improper subjects for discussion, such as those identified below.

It is the sole purpose of this meeting to provide a forum for expression of various points of view on topics described in the agenda and participants should adhere to that agenda. Under no circumstances shall this meeting be used as a means for competing companies to reach any understanding, expressed or implied, which tends to restrict competition, or in any way to impair the ability of members to exercise independent business judgment regarding matters affecting competition.

Topics of discussion that should be specifically avoided are:

- i. price fixing;
- ii. product discounts, rebates, pricing policies, levels of production or sales and marketing terms customer and territorial allocation;
- iii. standards setting (when its purpose is to limit the availability and selection of products, limit competition, restrict entry into an industry, inhibit innovation or inhibit the ability of competitors to compete);
- iv. codes of ethics administered in a way that could inhibit or restrict competition;
- v. group boycotts;
- vi. validity of patents;
- vii. on-going litigation;
- viii. specific R&D, sales or marketing activities or plans, or confidential product, product development, production or testing strategies or other proprietary knowledge or information."

Question and Answer

QUIZ / POLL

Please feel free to add quiz or live polling if you would like to interact with the audience.

CONTACT

For more information about the PSCI please contact:

PSCI Secretariat

Carnstone Partners Ltd Durham House Durham House Street London WC2N 6HG

info@pscinitiative.org

+44 (0) 7794 557524

About the Secretariat

Carnstone Partners Ltd is an independent management consultancy, specialising in corporate responsibility and sustainability, with a long track record in running industry groups.

Contractor Safety Management

ANTI-TRUST STATEMENT

"While some activities among competitors are both legal and beneficial to the industry, group activities of competitors are inherently suspect under the antitrust/anti-competition laws of the US, UK and other countries in which our companies do business. Agreements between or among competitors need not be formal to raise questions under antitrust laws, but may include any kind of understanding, formal or informal, secretive or public, under which each of the participants can reasonably expect that another will follow a particular course of action or conduct. Each of the participants in this meeting is responsible for seeing that topics which may give an appearance of an agreement that would violate the antitrust laws are not discussed. It is the responsibility of each participant in the first instance to avoid raising improper subjects for discussion, such as those identified below.

It is the sole purpose of this meeting to provide a forum for expression of various points of view on topics described in the agenda and participants should adhere to that agenda. Under no circumstances shall this meeting be used as a means for competing companies to reach any understanding, expressed or implied, which tends to restrict competition, or in any way to impair the ability of members to exercise independent business judgment regarding matters affecting competition.

Topics of discussion that should be specifically avoided are:

- i. price fixing;
- ii. product discounts, rebates, pricing policies, levels of production or sales and marketing terms customer and territorial allocation;
- iii. standards setting (when its purpose is to limit the availability and selection of products, limit competition, restrict entry into an industry, inhibit innovation or inhibit the ability of competitors to compete);
- iv. codes of ethics administered in a way that could inhibit or restrict competition;
- v. group boycotts;
- vi. validity of patents;
- vii. on-going litigation;
- viii. specific R&D, sales or marketing activities or plans, or confidential product, product development, production or testing strategies or other proprietary knowledge or information."

AGENDA

Basic introduction – definition, regulations

Contractor Safety Management - Challenges in India

Key elements of Contractor Safety management

Contractor Management some best practices

PSCI Questions w.r.t. Contractor Management

Common observations during PSCI supplier audits

ROBERTA HASKI

Company Role 2015 - present HSE Adviser, Elanco Asia- Pacifc, Japan, ANZ 2012 - 2015 Legal work and practice Variety of positions in HSE and HR senior management at global pharmaceutical Prior to 2012 company, university, hospital. 2011: Variety of consulting work. Admitted to practice law, graduated JD from UTS 2011: MLLR – Sydney Uni 2007 Prior to 2007 MSc – UNSW

BSc – Sydney Uni

RAJIV NARANG

Company Role	
Present	Associate Director Safety, Health & Environment – Corporate
	Centrient Pharmaceuticals (previously known as DSM Sinochem Pharmaceuticals)
	Rajiv.Narang@centrient.com
2015 / 2016	Special assignment as Corporate Safety, Health and Environment auditor with DSM Netherlands Corporate.
1996 – 2017	Various roles in Safety, Health and Environment
1986 – 1996	Various roles in Production

1986 Graduation from Punjab University, Chandigarh

Contractors

- Contractor; The term 'Contractor' refers to any individual or organisation who enters into an agreement (either written or orally) with a Company to carry out services.
- The scope for contractors can be wide enough to cover any type of work covering major projects to day to day activities e.g. housekeeping and cleaning, security services, electrical services, plumbing services, specific maintenance and repair of equipment, etc.
- Today we shall limit ourselves to Contractors related to projects, construction and maintenance activities.
- Contract labour hire is out of scope of this presentation they should be treated as you treat your employees

Contractor Safety Management - Regulations

- Indian Factories Act 1948
- The Companies Act, 2013
- As per Indian regulations the Principal employers is responsible for compliance including of contractors.
- The Occupational Safety, Health and Working Conditions Code (OSH) is a bill, currently under consideration for enactment by the Indian Parliament. The proposed OSH Code repeals and replaces 13 labour laws relating to health, safety and working conditions.

Contractor Safety Management – Challenges in India

Let's get your voice

In the Chat, please type some challenges you face OR you think w.r.t. Contractor Safety Management.

Contractor Safety Management – Challenges in India

- Many companies don't realise they are responsible for the H&S of contractors on site;
- Cost is still a major driving criteria at many companies, over the aspects of compliance, knowledge, experience, safety performance of the contractors;
- Contractor management is still largely an un-organized sector in India and many other countries;
- Reluctance by many contractors to adopt a safety culture; OT they consider Safety rather a HURDLE
- Contractors often take short-cuts to get the work done quickly and move on to the next job;
- Safety requirements listed in contracts are considered as a documentation formality, and generally not enforced by all.

Contractor Safety Management – Challenges in India

- Many companies rely on specialist contractors as they don't have the internal resources to conduct all the tasks necessary at the site;
- Resources lacking to adequately supervise contractors;
- Misconceptions;
 - that contractors know everything about the site so no need to have any types of orientation/induction;
 - that contractors know what they are doing so no need to check their procedures, permit requirements, no check or requirements for risk assessments, use of PPE;

Key elements of Contractor Safety Management

- Contractor Selection
- Agreement to contract conditions (including Safety, Health, Environment + Sustainability)
- Issuance of Contract.
- Orientation of each Contractor member.
- Day to day management / Regular monitoring / Celebrate the success
- Periodic evaluation and review
- Final evaluation

Contractor Selection

- Clearly list all requirements for Safety, Health, Environment and Sustainability etc.; (Best Practice – develop a Contractor Manual)
 - List of legal requirements.
 - SHE Policy, including leadership commitment.
 - SHE rules and practices.
 - SHE procedures applicable (including work permit)
 - Clear standards w.r.t. Tools, PPE's etc.
 - Clear policy on subcontractors.
 - Special conditions if any (e.g. competence, Supervision, etc.)
 - Special restrictions if any (w.r.t. materials, others).
- Issue above requirements to potential contractors along with expected work scope.
- Request information covering technical competence, Safety performance, safety management structure, company overview, qualification of staff etc. for evaluating prequalification of contractors.
- Perform pre-qualification visits to their ongoing contract sites. Collect feedback from their customers.

Contractor Selection contd.

- Perform pre evaluation basis work scope, technical competence, SHE management / performance etc. and shortlist few contractors (2-3)
- Have detailed pre discussions including technical work scope + expected safety culture / management structure. Get Quotes.
- Finalize suitable contractor(s).
- Be-aware of subcontractors involved (if any) If yes, include them as part of your pre qualifications.

Issuance of Contract

- Have detailed discussions with selected contractor, reaffirm and agree technical work scope and expected safety culture / management structure, along with the cost. Beware if a contractor is showing low cost and showing high commitment to expected safety standards, he may disappoint you later during work.
- Make clear if contractor shall be allowed to use his established standards / processes OR those provided by company.
- Once agreed sign off the contract including all agreed conditions as part of the contract. Consider clause related to action in case of noncompliance to agreed conditions.

Remarks; Best results are achieved only through joint commitment and participation.

Contractor mobilization

Phase 1;

- Organize an orientation meeting (1 day) with Contractor management team allocated for your work scope / location. Include physical round of work area.
- Set clear expectation on safety management (in line with agreed contract conditions)
- Agree management structure for control of all elements of safety, health, environment management (including incident reporting, management of emergencies, introduction to persons involved on behalf of your company, along with clear roles and responsibilities).
- Clarify queries if any.
- List key high risk activities and agree to conduct / review / agree risk assessment and safe working conditions to be adopted during shopfloor working. (ongoing activity)
- Develop basic infrastructure in advance / beginning to start with a 1st time right standard.

Contractor mobilization contd.

Phase 2;

- Organize orientation of each and every contractor member (in collaboration with contractor representative) before start of the work, and agree to be abide by safety rules, introduce to emergency management procedures of your respective sites. Use video's pictures where feasible.
- Train workforce to specific risks to their job, along with safe working rules, basis risk assessments done. (involve them in risk assessment as well)
- Develop a training schedule and organize trainings on various important topics.

Day to Day Management

- Daily toolbox talks (in case of big projects, suggest to split in groups).
 - Motivate for good work safe execution of previous day(s)
 - Work scope for the day.
 - key risks and special instructions if any.
 - Specific observations / incidents / near misses / learnings from the previous day(s), and agreed mitigating actions if any.
 - Re affirm expected behaviour, and whom to contact if they have any challenges / questions during the work.
- High focus on housekeeping (contributes to 60% of safe conditions).
- Work permit for all high risk jobs.
- Supervision for high risk jobs.
- Periodic field audits (preferably in collaboration with contractor team).
- Set short term milestones on safety performance and celebrate the success, including rewarding individuals for demonstrating safe behaviour.

Periodic evaluation and review

- Basis day to day management, evaluate contractor / subcontractors for various elements including workmanship, safety, health and environment compliance / performance, discipline, involvement etc.
- Have periodic (recommended minimum once a month) review meeting with contractor management, discuss outcome of the evaluation, agree for actions to be taken (if any), with clear responsibility / targets.
- Review progress on previously agreed actions if any.
- Include pictures where possible.

Contractor management – some best practices

- Management visibility rounds.
- Lead by example.
- Contractor information contained in a booklet/on line/ that is provided to all contractors;
- Rewards and recognition programs.
- Risk assessment for jobs (must for high risk activities). Develop detailed construction management program in case of large projects.
- Daily toolbox talks (Pre start up meetings).
- Clearly defined / agreed rules and processes (including zero tolerance rules).
- Safety orientation / trainings for each one.
- Clear identification for specialized / skilled individuals Vs general labour.
- Strong supervision (with competent supervisors) (dedicated supervision preferred)
- Periodic audits (along with contractor team).
- Periodic reviews with contractor.

PSCI questions related to Contractor Management

Quest 58 – Specifically deals with contractor management:

- Does the facility use any of the following processes for managing risks related to contractor activity onsite?
- On site pre-approval
- Training/orientation before entry
- Electronic access control
- Drug/alcohol testing
- On going and recurrent safety training
- Mandatory accident reporting
- Other...

PSCI questions related to Contractor Management

Contractor management implied in :

- Quest 10 Training and competency <u>are workers (including Contractors)</u> made aware of policies, procedures and trained accordingly;
- Quest 49 list significant H&S incidents ay site over last 3 years <u>includes</u>
 <u>contractors</u> eg serious injuries, fatalities;
- Quest 50 Is HSE training provided to employees, <u>including contactors</u>, this includes orientation/induction training;
- Quest 55 deals with use of work permits ensure <u>contractors</u> are using a permit system as required;
- Quest 72 Use of PPE ensure <u>contractors</u> are using the correct PPE;

Common observations during PSCI supplier audits

- Lack of due diligence regarding choice of contractors for specific work;
- Lack of clarity from site regarding the work required to be performed by contactor;
- Lack of orientation/induction, training about the site for contractors;
- Lack of risk assessments prior to commencing work;
- Contractors are not adequately supervised;
- Contractors do not use permit system when required;
- Contractors are not using required PPE;
- Emergency procedures and incident reporting are excluded from the induction/orientation training;
- Contractors may be pre-qualified, but there is no timeline for re-qualification;
- Lack of review at completion of work

Questions?

CONTACT

For more information about the PSCI please contact:

PSCI Secretariat

Carnstone Partners Ltd Durham House Durham House Street London WC2N 6HG

info@pscinitiative.org

+44 (0) 7794 557524

About the Secretariat

Carnstone Partners Ltd is an independent management consultancy, specialising in corporate responsibility and sustainability, with a long track record in running industry groups.

Introduction to QRA and Consequence Modelling

ANTI-TRUST STATEMENT

"While some activities among competitors are both legal and beneficial to the industry, group activities of competitors are inherently suspect under the antitrust/anti-competition laws of the US, UK and other countries in which our companies do business. Agreements between or among competitors need not be formal to raise questions under antitrust laws, but may include any kind of understanding, formal or informal, secretive or public, under which each of the participants can reasonably expect that another will follow a particular course of action or conduct. Each of the participants in this meeting is responsible for seeing that topics which may give an appearance of an agreement that would violate the antitrust laws are not discussed. It is the responsibility of each participant in the first instance to avoid raising improper subjects for discussion, such as those identified below.

It is the sole purpose of this meeting to provide a forum for expression of various points of view on topics described in the agenda and participants should adhere to that agenda. Under no circumstances shall this meeting be used as a means for competing companies to reach any understanding, expressed or implied, which tends to restrict competition, or in any way to impair the ability of members to exercise independent business judgment regarding matters affecting competition.

Topics of discussion that should be specifically avoided are:

- i. price fixing;
- ii. product discounts, rebates, pricing policies, levels of production or sales and marketing terms customer and territorial allocation;
- iii. standards setting (when its purpose is to limit the availability and selection of products, limit competition, restrict entry into an industry, inhibit innovation or inhibit the ability of competitors to compete);
- iv. codes of ethics administered in a way that could inhibit or restrict competition;
- v. group boycotts;
- vi. validity of patents;
- vii. on-going litigation;
- viii. specific R&D, sales or marketing activities or plans, or confidential product, product development, production or testing strategies or other proprietary knowledge or information."

AGENDA

Imparting basic knowledge about QRA

Hazard identification

Consequence assessment

Likelihood assessment

Risk summation

Risk presentation and reduction

SPEAKER BIO

- Name: Sunil Deshmukh
- Job Title: Technical Manager
- Organization: Sigma HSE India Private Limited
- Contact : +91 (0)11 43565446

Sunil Deshmukh is a graduate in Chemical Engineer from Mumbai University, currently working as Technical Manager with Sigma HSE India Private Limited, with total around 10 years of experience in process safety field. He has conducted safety studies like HAZID, HAZOP, QRA, HAC, FRA, EHS/ Safety Audits , Dust Explosion Risk Assessment, ATEX Assessment, Electrostatic Hazard Assessment, etc. for Oil & Gas, Chemicals, Petrochemical, FMCG and Pharmaceutical Industries.

AREAS OF EXPERTISE

- We bring together our Indian and UK experts to provide our clients with EHS services and appropriate engineering solutions.
- We undertake Laboratory testing in our UK laboratories to ISO, BSI ASTM and VDI individual test standards.

Consultancy

Testing

Training

CONSULTANCY SERVICES

Our Consultancy team provides a wide range of specialist technical knowledge covering the following sectors:

- Process Safety Management (PSM) Implementation
- Industrial Fire & Explosion Hazards
- Electrostatic Hazard Assessment
- Process Hazard Analysis (PHA)
- Functional Safety
- Chemical Reaction Hazards
- Training Workshops

LABORATORY TESTING

- Powder Fire & Explosion Properties
- Gas and Vapor Properties
- Electrostatic Properties
- Chemical Reaction Hazard Testing

RISK MANAGEMENT AND HAZARD IDENTIFICATION

BP, TEXAS CITY

 On March 23, 2005 at 1320 hrs.; an explosion and fire occurred at the BP Texas City Refinery Isomerization (ISOM) plant. In this incident, 15 people were killed and 180 were injured.

QRA TO BE USED FOR

- Risk Management
- Decision making
- To increase awareness of hazards
- Emergency Response Planning
- Communication of risk to public

RISK MANAGEMENT PROCESS - QRA

- What are we trying to achieve? (Design Intent)
- What could go wrong? (Hazard Identification)
- How likely and how big an impact? (Risk Analysis)
- How significant is this estimated risk and do we need to reduce this risk? (Risk Assessment)
- If so, what is the most cost-effective control/mitigation option? (Risk Management)

TYPICAL QRA METHODOLOGY & RISK MANAGEMENT

HAZARD IDENTIFICATION TECHNIQUES

Experience Based

- Checklists and What-If / Checklists
- Indices & Layers of Protection Analysis

Analytical

- Failure Mode and Effects Analysis (FMEA)
- Fault Tree Analysis & Event Tree Analysis

Creative

- Brainstorming
- HAZID
- HAZOP

SECTIONALISATION

WHY SECTIONALISATION?

- Division of each process into various Isolatable Sections.
- Easier understanding of process
- Every single element is given importance.
- To determine the leak size distribution

BASICS OF ISOLATABLE SECTIONS

- Each isolatable section extends from one ESD valve to another ESD valve.
- Pumps and Compressors are also considered as an isolation
- Control valves are valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "set-point" to a "process variable". Hence, not considered as isolation

DISCHARGE

Leak

Instantaneous

CONSEQUENCE CALCULATIONS

WHAT IS CONSEQUENCE MODELLING

 Application of mathematical formulae to predict consequences from toxic & flammable releases

Techniques cover modelling of:

- discharge rates
- size and shape of flammable and toxic gas clouds
- flame and radiation of ignited releases
- explosion effects

CONSEQUENCE EFFECTS

Fire

- Pool fire
- Flash fire
- Fire ball
- Jet fire

Toxic release

Explosion

- BLEVE
- Vapor cloud explosion

EVENT TREE – FLAMMABLE CHEMICAL

Note: Above events will also ignite pools of flammable liquids (Pool Fire)

POOL FIRE

JET FIRE

FIRE DAMAGE

Radiation Intensity (kW/m ²)	Casualty Threshold
4.7	Sufficient to cause pain within 20 sec. Blistering of skin (first degree burns are likely)
12.5	Minimum energy required for piloted ignition of wood, melting plastic tubing etc. 10% lethality
37.5	100% lethality

FLASH FIRE

VAPOUR CLOUD EXPLOSION

EXPLOSION DAMAGE

OVERP	RESSURE		
bar g	Psi g	EFFECT ON HUMAN	EFFECT ON STRUCTURES
0.03	0.435	Light injuries from fragment may occur	Large & small windows usually shattered, Occasional damage to window frames
0.1	1.45	People damaged by flying glass, debris	Partial collapse of walls/ roofs of houses
0.3	4.35	30% Fatality for impacted area	Near complete destruction of impacted buildings

PSC|Test title

TOXICIMPACT

Toxic Impact is a factor of:

Toxicity of material

Exposure Duration

Guideline	Target Group	Definition	Exposure Duration
ERPG	Public	Three-tier guideline for emergency response	1 hour
IDLH	Worker	Highest concentration from which escape possible without permanent damage	Used to be 30 minutes. The revised IDLH (1994) mentions no exposure duration.
TLV, PEL, REL	Worker	Occupational exposure for 8-hour workday	8 hours per day, 20 to 30 years
STEL	Worker	Occupational short-term exposure limit	15 minutes

ATMOSPHERIC STABILITY

Thermal Turbulence

Generated by atmospheric temperatures

Mechanical Turbulence

Generated by wind speed

WEATHER STABILITY

	DAY		NIC	GHT		
Incom	ing Solar Ra	diation	Cloud Cover			
Strong	Moderate	Slight	Overcast	Clear		
А	A-B	В	Е	F		
A-B	В	С	Е	F		
В	B-C	D	D	Е		
С	C-D	D	D	D		
D	D	D	D	D		
	Strong A A-B	Incoming Solar Ra Strong Moderate A A-B A-B B B B-C	Incoming Solar Radiation Strong Moderate Slight A A-B B A-B B C B B-C D	Incoming Solar RadiationCloudStrongModerateSlightOvercastAA-BBEA-BBCEBB-CDD		

- "D" stability is usually the most common stability category,
- EPA RMP specifies that "F / 1.5" m/s wind is the "worst case" meteorological condition

LIKELIHOOD ESTIMATION

WHAT IS LIKELIHOOD?

- Likelihood is Probability / Frequency of an event!
- In a QRA the frequency to be estimated is the one of the event for which we have calculated the consequences (Ex: 10 mm leak in the pipeline)

PARTS COUNT

- For each isolatable section, no. of components (Valves, Flanges, Fixed Equipment) are counted and filled in calibrated sheet.
- Parts count sheet for each section is linked to base frequency sheet (based on UK HSE/ OGP/ E&P Forum etc.)
- Parts count output includes release frequency for each section divided for individual leak sizes; sectional hold up inventory based on volume calculations.

Equipment Name	Unit / year	Frequency		Н	ole Nominal Diameter (mn	n)	Total
				10	50	100	
COMPRESSORS / CENTRIFUGAL	per Item	9.61E-03	Prob. Dist. Frequency	0.87 8.38E-03	0.09 8.70E-04	0.04 3.63E-04	1.00 9.61E-03
COMPRESSORS / RECIPROCATING	per Item	7.08E-02	Prob. Dist. Frequency	0.85 6.04E-02	0.10 7.30E-03	0.04 3.08E-03	1.00 7.08E-02
FILTERS	per Item	3.34E-03	Prob. Dist. Frequency	0.79 2.65E-03	0.13 4.20E-04	0.08 2.69E-04	1.00 3.34E-03
FIN FAN COOLERS	per Item	1.84E-03	Prob. Dist. Frequency	0.81 1.49E-03	0.13 2.40E-04	0.06 1.09E-04	1.00 1.84E-03
FLANGES / D < = 2"	per Flange Face	6.91E-05	Prob. Dist. Frequency	0.82 5.65E-05	0.18 1.26E-05	0.00 0.00E+00	1.00 6.91E-05
FLANGES / 2" < D < = 12"	per Flange Face	1.23E-04	Prob. Dist. Frequency	0.84 1.03E-04	0.09 1.14E-05	0.07 8.21E-06	1.00 1.23E-04
FLANGES / D > 12"	per Flange Face	2.59E-04	Prob. Dist. Frequency	0.87 2.25E-04	0.09 2.25E-05	0.05 1.20E-05	1.00 2.59E-04
HEAT EXCHANGERS / HC IN SHELL	per Item	4.61E-03	Prob. Dist. Frequency	0.77 3.54E-03	0.14 6.30E-04	0.09 4.36E-04	1.00 4.61E-03
HEAT EXCHANGERS / HC IN TUBE	per Item	3.12E-03	Prob. Dist. Frequency	0.78 2.42E-03	0.14 4.30E-04	0.09 2.70E-04	1.00 3.12E-03
INSTRUMENTS / SMALL BORE CONNECTIONS	per Item	6.92E-04	Prob. Dist. Frequency	0.89 4.82E-04	0.11 6.10E-05	0.00 0.00E+00	1.00 5.43E-04
PIG LAUNCHERS	per Item	5.78E-03	Prob. Dist. Frequency	0.75 4.32E-03	0.12 7.00E-04	0.13 7.57E-04	1.00 5.78E-03
PSCI Test title	2					🔰 @PSCInit	iative 31

			IN-LINE EQUIPMENT			
Fauipmen	t Diameter	Valv		Flanges	Instruments / Small Bore	Piping Length
		Actuated Manual			Connections	
(mm)	(inches)	No.	No.	No.	No.	(m)
900	36					
850	34					
800	32					
750	30					
700	28					
650	26					
600	24					
550	22					
500	20					
450	18					
400	16					
350	14					
300	12					
250	10					
200	8					
150	6					
100	4					
80	3		11	24		7.00
60	2 1/2					
50	2	4	9	18		4.00
40	1 1/2					
25	1					
20	3/4				17	2.000
< = 15	< = 0.5				4	1.000

LIKELIHOOD DATABASE

CCPS

- TNO : BEVI v3.2 guidance
- DNV Database
- UK HSE database
- Lees
- Cox et al
- OGP

LIKELIHOOD ANALYSIS – EVENT TREE

LIKELIHOOD ESTIMATION

Factors to be considered:

- Leak frequency
- Number / inventory of equipment / fittings
- Isolation auto (ESD / FSD / interlocks) or manual (operator)
- Ignition probability
- Weather class
- Wind Direction
- Day / Night
- Presence (number and probability) of personnel / public
- Probability of fatality (consequences) from the event

RISK SUMMATION AND ANALYSIS

INDIVIDUAL RISK

The risk experienced by a hypothetical individual at a particular location in a given time period - usually risk of death per year.

Measures:

- Location-specific individual risk (LSIR)
- Individual-specific individual risk (ISIR)

Expressed as:

Individual risk per year

INDIVIDUAL RISK CONTOURS

- A commonly used presentation form for risk to the public is the so-called risk contour.
- The number at this contour represents frequency at which a person, assumed to be permanently present at location of the contour, sustains a given level of harm.
- The risk contours must be interpreted as characterising points in space & not the risk to individual people; people move from place to place during their normal living activity.

LSIR CONTOURS

RISK ACCEPTANCE CRITERIA – UK HSE

GROUP RISK / SOCIETAL RISK

The risk experienced in a given time period by the whole group of personnel exposed.

10000

Number of fatalities (N)

- For operations with risk between intolerable and negligible, it is necessary to ensure that risk levels have been reduced to ALARP (as low as reasonably practicable) using techniques like Cost Benefit Analysis (CBA).
- For cases which are not so straight forward, QRA will be required to assist in demonstration of ALARP.

RECOMMENDATIONS FROM QRA

- Hazard elimination (by substitution)
- Cost effective Safety measure
- Selection of alternatives
- Risk mitigation (barriers)

THANK YOU!

For Queries, contact our Process Safety Expert on

+91 (0)11 43565446 or

write to us on safety-india@sigma-hse.com

CMR Substances Safety

PSCI Virtual Conference Sept 2021

SPEAKER BIO

Vijaya Kumar Bendi

Manager, External Supply EH&S

Johnson & Johnson Pvt. Ltd.

vbendi@its.jnj.com

- M.Sc. (Chemistry), M. Tech. (Environmental Management), Diploma in Ind. Safety, BOHS OHTA modules.
- >15 years of multidisciplinary experience in EH&S in various industries (Pharmaceutical, Consumer & Medical devices)
- Support EH&S for J&J External Suppliers in India & Southeast Asia EH&S Onsite Assessments, Technical / Capability Building
- Core team member of J&J PSM Team
- PSCI Role: Co-Lead PSM sub team

ANTI-TRUST STATEMENT

"While some activities among competitors are both legal and beneficial to the industry, group activities of competitors are inherently suspect under the antitrust/anti-competition laws of the US, UK and other countries in which our companies do business. Agreements between or among competitors need not be formal to raise questions under antitrust laws, but may include any kind of understanding, formal or informal, secretive or public, under which each of the participants can reasonably expect that another will follow a particular course of action or conduct. Each of the participants in this meeting is responsible for seeing that topics which may give an appearance of an agreement that would violate the antitrust laws are not discussed. It is the responsibility of each participant in the first instance to avoid raising improper subjects for discussion, such as those identified below.

It is the sole purpose of this meeting to provide a forum for expression of various points of view on topics described in the agenda and participants should adhere to that agenda. Under no circumstances shall this meeting be used as a means for competing companies to reach any understanding, expressed or implied, which tends to restrict competition, or in any way to impair the ability of members to exercise independent business judgment regarding matters affecting competition.

Topics of discussion that should be specifically avoided are:

- i. price fixing;
- ii. product discounts, rebates, pricing policies, levels of production or sales and marketing terms customer and territorial allocation;
- iii. standards setting (when its purpose is to limit the availability and selection of products, limit competition, restrict entry into an industry, inhibit innovation or inhibit the ability of competitors to compete);
- iv. codes of ethics administered in a way that could inhibit or restrict competition;
- v. group boycotts;
- vi. validity of patents;
- vii. on-going litigation;
- viii. specific R&D, sales or marketing activities or plans, or confidential product, product development, production or testing strategies or other proprietary knowledge or information."

AGENDA

1. CMR Definitions

- 2. Importance of focus on CMR at the Workplace
- 3. Hazard Communication & Classifications
- 4. Risk Assessment
- **5. Controls of Hazards**
- 6. Training
- 7. Solvent Selection
- 8. CMR Exposure Control Takeaways

CMR Definitions

- Carcinogens (C): substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may induce cancer or increase its incidence.
- Mutagens (M): substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may induce heritable genetic defects or increase their incidence.
- Reprotoxins (R): substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may produce or increase the incidence of non-heritable adverse effects in the progeny and/or an impairment of male or female reproductive functions or capacity.

Report ILO: Facts & Figures

Workday for Safety & Health 28.4.2013

2.02MM people die each year from work-related diseases

321,000

160MM

non-fatal work-related diseases per year

occupational accidents

people die each year from

317MM

non-fatal occupational accidents per year

This means that:

- Every **15 seconds**, a worker dies from a work-related accident or disease.
- Every **15 seconds**, 151 workers have a work-related accident.
- Carcinogens, pneumoconiosis & Asbestos Related Diseases

6

EU Roadmap on CMR

The European Commission has outlined exposure limits for 13 cancer-causing chemicals in the estimated 102,000 occupation Europe each year.

Pro

n a move desig	ned to reduce	ft The	iemes	Emerging risks	Surveys & Stati	stics Legislation	Campaigns & Awards	Tools & Publications	About EU-OSHA	
0		Home » Ther	emes » Dangerou	us substances » The Eu	Iropean Commission's					
2.4 OMay 4.2020 @justin Boucher 2.2 OMay 4.2020 @justin Boucher 18 On April 27, 2020, the European Commission (EC) published a draft regulation as carcinogenic, mutagenic or toxic to restricted substances in the EU (REACH Annex XVII). Of the substances are included in the FACET database of food contact chemicals: ethyler benzyl-2-dimethylamino-4-morpholinobutyrophenone (CAS 119313-1 1072-63-5), and 2-methylimidazole (CAS 693-98-1). 1.8 For azocolorants, the regulation also references new test methods an provisions and references to make it easier to implement the current on the draft regulation is currently open until May 25, 2020. 0.013 Read more 0.5 EC (April 27, 2020). "Chemicals regulation (REACH) - updated list of rest	Themes Ageing & OSH Benefits of O Dangerous su REACH)SH			ropean Commission's proposal on carcinogens Commission proposes to better protect workers from cancer-causing chem The European Commission is proposing changes to the <u>Carcinogens and</u> (2004/37/EC) to limit exposure to 13 cancer-causing chemicals at the wor					
roposed OELs mg/m³	Padaging Home M	CLP Roadmap of News Resources	on carcinogens Food Packag	ing & Health Events	About Us Q	around 102,000 deaths Introducing these limit v protection of exposed w	account for more than half	ses of occupational cance onstruction sector. By red	er and improve legal ducing the	
	🕅 May 4, 2020 💄 Justin Boucher					encourage more cross-l rotection of their health will	border employment, becau be guaranteed in all Memt		ured that minimum	
2.2						1 ^d in ^d 🕂 🖶				
18	On April 27, 2020, the European Commission (EC) published a draft regulatic	on that will add	[D]	RELATED ARTICLES	ç					
0.1	substances recently classified as carcinogenic, mutagenic or toxic to reprodu	uction (CMR) to the l	list of							
4.4	restricted substances in the EU (REACH Annex XVII). Of the substances being are included in the FACET database of food contact chemicals: ethylene oxid			I ministers recommend Pl						
0.025	benzyl-2-dimethylamino-4'-morpholinobutyrophenone (CAS 119313-12-1), 1-	· · · · ·	S > EU	l committee rejects increa	asing lead limits in	CMR classi REACH res			•	
1.8	For azocolorants, the regulation also references new test methods and remo	oved several obsole		HA considers placing 7 su		the Europea				
3	provisions and references to make it easier to implement the current restric on the draft regulation is currently open until May 25, 2020.	tion. A comment pe:		orization list		draft regula				
0.013	5 ,1 , , ,			B challenges ECHA to 10 F rovements		recently cla		•		
0.5	EC (April 27, 2020). "Chemicals regulation (REACH) – updated list of restricted	d substances."		HA conclusions on siloxa	ines, PEHXS.	mutagenic of the list of re			× •	
0.1	Chemical Watch (April 30, 2020). "Commission seeks views on proposed CMF	R REACH restrictions	IS." > No	naldehyde <i>vrdic Council</i> checks compl		(REACH Ar		1001011000		
0.3 f/ml			sold	online						
			W T	OPICS	1 1 4		₩@PS	SCInitiati	ve	

European Agency for Safety and Health at Work

 $^{\circ}$

🎔 fi 🛅 🗈 🚥 B

1,2- Epoxypropane 1.3-Butadiene 2-Nitropropane Acrylamide Bromoethylene Chromium (VI) compounds Ethylene Oxide Hardwood dusts Hydrazine o-Toluidine Respirable Crystalline Silica (RCS) Refractory Ceramic Fibres (RCF)

PSCI

Chemical agents

OPICS biomonitoring bioplastics bisphenol A being added to pril 27, 2020, (EC) published a substances ogenic, uction (CMR) to ces in the EU

News & Events | Press | Contact us a a a

—

CDC US - ICMR

 www.cdc.gov/niosh/topics/cancer/ С

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

The National Institute for Occupational Safety and Health (NIOSH)

Search NIOSH SEARCH

CDC A-Z INDEX ✓

Q

Home » Know About Cancer » Stay Fit » Media Contact Us More » Smokeless Tobacco हिंदे

Gall Bladder Cancer

Occupational Carcinogens

icma NICPR

More than 40 agents, mixtures and exposure circumstances in the working environment are carcinogenic to humans and are Common Cance classified as occupational carcinogens. Occupational cancers are concentrated among specific groups of the working Breast Cancer population, for whom the risk of developing a particular form of cancer may be much higher than for the general population. It is well documented that occupational carcinogens are causally related to lung cancer, mesothelioma, and bladder cancer. For example, mesothelioma (cancer of the outer lining of the lung or chest cavity) is to a large extent caused by work-related exposure to asbestos.

Smokeless Tobacco	The National Institute for Occupational Safety and Health (NIOSH)										
Smokeless Tobacco हिंदी में	Workplace Safety & Health Topics	Providing National and World Leadership									
	Cancer (Occupational) –	NIOSH > Workplace Safety & Health Topics									
Search here VQ	Carcinogen List										
	Workplace Safety & Health Topics Cancer (Occupational) - Carcinogen List O Cancer Clusters O Cancer Policy at NIOSH Ar Diesel Exhaust in Miners Ar Study (DEMS) an Millions of U.S. workers are expressed studies. However, less than 2% of Research on Cancer for carcinop that 3-6% of all cancers worldw means that in 2012 (the most reworkplace. This is probably an ucancer. Also, these estimates maters	OCCUPATIONAL CANCER									
Common Cancers	Cancer Policy at NIOSH	f У 🕂									
Breast Cancer		Around the world, 12.7 million people are diagnosed with cancer every year, and the number is expected to increase due to the growth and aging of the population, as well as reductions in childhood mortality	On this Page								
Oral Cancer		and deaths from infectious diseases in developing countries(1). Cancer is the leading cause of death in	Cancer Clusters								
Constant Conservation	Millions of U.S. workers are	exposed to substances that have been tested as carcinogens in animal studies o	r found to be possibly carcinogenic	c in human							
Cervical Cancer	studies. However, less than 2	2% of chemical or physical agents manufactured or processed in the U.S. have b	een evaluated by the International	Agency for							
Gastric Cancer	Research on Cancer for carc	inogenicity(2). Based on well-documented associations between occupational	exposures and cancer, it has been e	estimated							
Lung Concor	hat 3-6% of all cancers wor:	ldwide are caused by exposures to carcinogens in the workplace 3,4). Using ca	ncer incidence numbers in the U.S.	(5), this							
Lung Cancer	means that in 2012 (the mos	st recent year available), there were between 45,872 and 91,745 new cancer ca	ses that were caused by past expos	sure in the							
Colorectal Cancer	workplace. This is probably	an underestimate, partly because we continue to discover new information abo	ut agents in the workplace that ma	ay cause							
Esophageal Cancer	cancer. Also, these estimate	s may change over time as the number of cancers increase or decrease in the U.	S. Cancers that occur as a result of	exposures in							
esophugeur euneer	the workplace are prevental	ble, if exposures to known or suspected carcinogens can be reduced(6-8).									
Prostate Cancer											

Hazard Communication

GHS pictogram for CMRs categories 1 (A or B) and 2;

GHS pictogram to illustrate CMR hazards

- Signal word 'Danger' for category 1 (A or B) and 'Warning' for category 2;
- CMR classified substances are classified with the following hazard statements: H350: May cause cancer (Cat 1 (A or B))
 - H340: May cause genetic defects (Cat 1 (A or B))
 - H360: May damage fertility or the unborn child (Cat 1 (A or B))

CMR Classification (EU CLP/GHS)

Effects / Hazard Class	Categories	Category definitions
	Category 1A	Substances known to have carcinogenic potential for humans.
Carcinogens	Category 1B	Substances presumed to have carcinogenic potential for humans.
	Category 2	Substances suspected of having carcinogenic potential for humans.
	Category 1A	Substances known to induce hereditary mutations in the germ cells of humans.
Mutagens	Category 1B	Substances presumed to induce hereditary mutations in the germ cells of humans.
	Category 2	Substances of concern because they could induce hereditary mutations in the germ cells of humans.
	Category 1A	Substances known to be toxic for human reproduction.
Reprotoxins	Category 1B	Substances presumed to be toxic for human reproduction.
	Category 2	Substances suspected of being toxic for human reproduction.

CMR Classification (EU CLP/GHS)

- A substance can have one or more of the CMR hazards. When it has more it is classified according to the evidence for each type of hazard, for example:
- CM: benzene is carc. 1A, muta. 1B;
- CR: lead (II) chromate is carc. 1B, repr. 1A;
- MR: dibutyltin dichloride is muta. 2, repr. 1B;
- CMR: benzo(a)pyrene is carc. 1B, muta. 1B, repr. 1B;
- C or M or R: nickel dioxide is carc. 1A, trifluoroiodomethane is muta. 2, carbon monoxide is repr. 1A.

Carcinogen Classification Comparison

Risk	IARC	ACGIH	China	GHS
High	Group 1 Known Human Carcinogen	A1 Confirmed Human Carcinogen	G1 Known Human Carcinogen	1A Known Carcinogen
	Group 2A Probable Human Carcinogen	A2 Suspected Human Carcinogen	G2A Probable Human Carcinogen	1B Presumed Carcinogen
	Group 2B Possible Human Carcinogen	A3 Confirmed Animal Carcinogen With Unknow Relevance to Humans	G2B Possible Human Carcinogen	2 Suspected Carcinogen
Low	Group 3 Not Classifiable for Human	A4 Not Classifiable as a Human Carcinogen	G3 Not Classifiable for Human	
	Group 4 Probably not Human Carcinogen	A5 Not Suspected as a Human Carcinogen	G4 Probably not Human Carcinogen	
	*IARC(International	*ACGIH(American Conference of Governmental Industrial	* Refer to IARC	
	<i>Agency for Research on Cancer)</i>	Hygienists)	《 GBZ 2.1-2019》	

Carcinogen look up tool (same applicable for M&R) Carcinogen reference matrix: map most conservative classification

CMR substances exposure control program Risk Assessment

- The CMR Exposure Control procedure is a written document describing the site risk management of GHS defined category 1A and/or 1B carcinogens, mutagens, reprotoxins
 - The document should include:
- Location on site where CMR substances are stored and used;
- **Communication** means to inform personnel of hazards and risks;
- Risk assessments conducted to evaluate personnel exposure potential;
- **Exposure assessment** linked to Medical Surveillance;
- **Controls** in place strictly following the hierarchy of controls process to manage risk for both personnel and the environment and
- A process to avoid introduction of new CMR substances

Chemical Identification

- The facility should review all chemicals handled on site
- Including those in laboratories, research, development, and operations,
- Determine if any GHS defined 1A & 1B CMR substances are present.
- In addition, all chemicals on site should have an up-to-date Safety Data Sheet and must be available to employees.

Safe handling of substances classified as CMR Chemical identification: example chemical inventory

Pls pay attention to "H350, H340, H360"

efine subst	fine substances. Hazard data.				Hazard data	Substances of Very High Concern										
Materia I Code SAP	Materia (Subatance Name	CAS Number	EC Number: BNECS / ELINCS	SDS / REACH compliant	SDS is sue t date	Hazard Classification	CLP hatand class fication	PBOEL		STEL	CMR C=Cartin og en M= Matagen, R= Toxic for re pordaction	SVIIC Substance of very high concern Substance on Candidate List OR Substance on Authorisation List (Annex XIV) V/N?	Toxicant oral LD_	LD _a Orain at mg/kg Default. LD _a Orain at mg/kg : LC _a shalation rat; LD _a Dermaimg/kg	Other	
				Year IV eas	4202017	کی کی Linger	Reproductive Tostoly-Cal 18, Eye Intelation Cal 2. STOT - Single Exposure - Cal 3. Simitration Cal 2.	ná	10 ppm Sk	20ppm Sk	14-Cat 18	CL=Yes	nái	LDS0 Chair st = 41 S0mpAg ; LCS0 Inhabition rai>5.1mp3 Abr; LDS0 Dermit rai = 50 00mpAg	May cause respiratory inflation. May damaga ihe unborn child, infating of life silan	UBL 9.5% LBL 1.9%
				Yes /Yes	5/1 92 016	Linger	Sile Infailion Calegory 2 Serious Eye Demoge Calegory 1 Acute Toochy One Calegory 3 Acute Toochy One Calegory 3 Acute Toochy Demot Calegory 2 Acute Toochy Infailion Dati / Met Calegory 3 Specific Target Organ Systemic Toochy Single Exposure Calegory 1 Emotoremental Chronic Calegory 2	38	0.5ug/m ² Sk	nia	nia	No	Yes	LD50 Cratinal 14 Origikg ; LD50 Cratinal (14 Origikg ; LD50 Chemail LD50 (24 Origikg) = 100 - 200 mg/kg	Dermet- neadly absorbed via Sitn. Aquecus solution may increase elematicativ.	niti
				Year /Y eas	10/28.220 1	Lingr	Flammatile Liquid Cal 3, Acute Toxicity-Hristelion Cal 2, STOT Single Explosure 3, State Institute Cal 2 Exp Damage Cal 1 Respiratory Simplification Cal 1. Ster Simplification Cal 1.	ná	nid	nia	nia	RD .	Yes	LISO Cini (NaCBingNg LISO Ceram Nat 2000 mgNg LISO Hatalaka (Nat. 0.1 Cing) Air	Chapters serverse eye to finiter. May cause after gy or astheres symptome or have thing of ficulties of bracket. My causes on a filery can be cause.	nä
				Yes /Yes	3/152013	\Diamond	Dangain Satin Carnasian Category 1	nà	10ppm	15ppm	nia	no	ná	LDS0 Chairaí = 35 30ng kg ; LCS0 inhaitiún ná +16 000ppn 4kr; LDS0 Dermin aí = ND ng kg	Contactive to silon, eyeas and respit story system. Contacts is entropy eyes damage, service burns to silon, add burns to marb, thread and storacts.	4.0-19
				Yes /Yes	11/22/20 1	\diamond	Fiermsbie Liquid. 3 Skin Chrosion. Cal 1A	ná	10 ppm	15ppm	nia	no	nái	niti	May clause burns in mucculs membranies, litrost, des optiegus and stormich. Causes service burn if in contact with skin. Causes serious eye damige	
				Yeas A' cas	9/29/2016	Dinger	Flermelée Ligats Cai 2, Sve Intation Cai 24,	ně	TLV 250ppm H = 500ppm	ACOH - 500 ppm	nia	No	nás	LDOneinal=5000 mpha; LDIntervietan maaw = 3000 mpha;	Vapours may initiale broad and respiratory system and cause bencharbs, distinguishes and distinguishing cause informating they have been cause nearesses and initiation to the mouth, throat and dynative system May cause solve dynases and relation. I doing at contact may cause defailing of the side Causes are initiation. Initiat dispose and unclean methomes a	

16
New Chemical Approvals

- New chemical requester should include a review by EHS staff to determine if the substance is a GHS (Globally Harmonized System) defined 1A & 1B CMR substance
- If the new chemical is defined as a 1A or 1B CMR substance, the chemical requester should justify the need for the compound and measures should be taken to substitute with a less toxic alternative.
- If a substitute cannot be found for a CMR substance, the CMR exposure control procedure should be followed to manage potential risk of handling the substance.
- A new CMR substances can only be introduced after approval from the Site Chemical Approval process including a completed risk assessment of its intended use.
- Internal Occupational Health Department should be informed of any GHS defined 1A & 1B CMR compounds brought onto the site.

Designated Use Area

- Areas where GHS defined 1A & 1B CMR substances are used or stored should be identified with signs and labels.
- Areas where quantitative risk assessments identify exposure risk above the OEL should have restricted access for "authorized personnel only".

Process or Experiment Description

- Details should be specific enough to provide information needed for risk assessments. Details of the process/experiment should include:
 - ✓ Procedure/Use
 - ✓Scale
 - ✓ Engineering Controls/Equipment
 - ✓ PPE
 - ✓ Procedure Steps & Precautions

Process or Experiment Description

- Determining if situations might cause harm to people and decide whether reasonable steps have been taken to prevent that harm.

- Qualitative Risk Assessment is used to document potential risk for each Process/Experiment where 1A & 1B CMR substances are used.

Risk Assessment – What IF

RISK ANALYSIS RELATED TO THE LOGISTIC FLOW OF A CARCINOGEN

Carcinogen:

Process:

Date:

'What-If' Question	Consequences	Detection/Protection Measures	Action No.	Fre- quency *	Conse- quence *	Risk Class *
General	•					
1. Warehouse reception: unloading trucks						
Damaged drums (bulging/dented/poorly	Release of carcinogen →	Check before unloading truck		3	2	3
sealing drum cap/etc.).	- intoxication by inhalation of product	→ notify Fire Brigade if		2	2	4
	 sensitization reaction (contact) eye injury 	appropriate.		2	2	4
	Carcinogen spill.	Check before unloading truck		3	2	3
		→ notify Fire Brigade if		2	2	4
		appropriate.		2	2	4
Damage while unloading:	Release of carcinogen →	External training/annual		3	2	3
 caused by forklift truck. 	- intoxication by inhalation of product	refresher course for forklift		3	2	3
	- sensitization reaction (contact)	truck drivers.		3	2	3
	- eye injury	Maintenance/inspection of				
		forklift trucks.				
		Emergency plan procedure.				
	Carcinogen spill.	Containment with impermeable		3	3	2
		foundation.		3	2	3
		Spill control.		3	2	3
		Emergency plan procedure.				
Damage while unloading:	Release of carcinogen →	External training/annual		3	2	3
 caused by dropping product. 	 intoxication by inhalation of product 	refresher course for forklift		3	2	3
	 sensitization reaction (contact) 	truck drivers.		3	2	3
	- eye injury	Maintenance/inspection of				
		forklift trucks.				
		Emergency plan procedure.				
	Carcinogen spill.	UN-approved drums.		3	3	2
		Containment with impermeable		3	2	3
		foundation.		3	2	3
		Spill control.				
Transport to cold storage room		Emergency plan procedure.				

2. Transport to cold storage room

Qualitative Risk Assessment - Inhalation factors

a.) Hazards group

d.)[

	OEL/MAK		H-Phrase	Patian
	μg/m ³	ppm	if no OEL / MAK is available	Rating
_	10.000 - 1.000	500-50	no H-Phrase H304, H319, H335, H336	1
	1.000-100	50-5	H302, H318, H332, H371	2
	100-10	5-0,5	H301, H314, H331, H334, H341, H351, H361, H370, H373,	4
[10-1	0,5-0,05	H300, H330, H372,	6
- [<1	< 0,05	H340, H350, H350, H360,	10

f.) Technical Controlls

Isolator with RTP Closed Containment	0.05
Containment to < 0.1ug/m ³	0.075
High containment powder charging systems powder transfer valves split butterfly valve etc. contaiment <1ug/m ³	0.1
Containment charging systems - <100ug/m ³ Ventilated Enclosure	0.25
Laminar Flow Down Flow Booth	0.5
Local Exhaust Ventilation	0.75
Open; Room Ventilation	1

g.) # Employees (performing the task)

1-2 Employees	1
2-4 Employees	2
4-10 Employees	4
10-20 Employees	6
> 20 Employees	10

	Risk Classifications & Required Control Measures												
Categorie	Value	Wording	Conclusion										
Ш	>=50	High Risk	High risk, above the OEL, immediate measures needed in combination with follow-up (quantitative risk assessment)										
II	>=15 to <50	Medium Risk	Medium risk, close to OEL, follow up needed										
	<15	Low Risk	low risk, no PPE needed, no further actions needed										

Calculation of Severity:

all values are multiplied: hazard group x amount x dustiness x techn.

Calculation of Priority: values get summarized: duration + frequency + # employees

No categorize needed, but insteed a hoover over box or an info box showing the following info: If the Prio value is <= 10 the prio is low, if the value is > 10 but <= 20 the prio is medium. if the value is >20 the prio is high.

Note: Risk assessment tool also available for Dermal hazards

	concry micromized powde																								
1	Substance parameters									Process paaremters				Qualitive Risk Assessemnt Calculation						1	<u>Risk rating</u>				
2	Material CAS-# OEL / TLV		TLV	Vapour Pressure	Dustiness		Form	Product	Amount	Concentration	Temperature	Duration	Frequency	Hazards Group	Amount/Volume	Duration	Frequency	Dustiness/ Vapour Pressure	# Employees	Techn. Measures	Hazaro	l/Severity	ſ	Prio	
3	-	-	[µg/m3 🚽	[ppm] 👻	[kPa] 🚽		-	S/L 🖵	-	[kg] 🚽	[%] 🖵	[°C] 🖵	[h] 🖵	_	-	-	-	-	-	-	-	Ex. Ris _↓ †	Categorie 👻	Value 👻	Categorie 👻
4				500	0.14			L		0.34	100	20	0.5	less than monthly	1.0	2.0	2.0	1.0	1.0	2.0	1.0	2	1	5.00	1.000
5				500	0.14			L		0.04	100	20	0.5	less than monthly	1.0	2.0	2.0	1.0	1.0	6.0	1.0	2	I. State	9.00	I. State
6			H 318					L		0.9	100	20	2	several times a mo	1.0	2.0	6.0	4.0	1.0	2.0	1.0	2	1	12.00	11
7				500	0.14			L		0.05	100	20	0.5	less than monthly	1.0	2.0	2.0	1.0	1.0	10.0	1.0	2	I and	13.00	11

b.) Amount/Volume

< 1g or < 1 ml	0.5
1 g- 100 g or 1 ml - 100 ml	1
100 g – 1 kg or 100 ml – 1 l	2
1 kg - 10 kg or 1 I - 10 I	4
10 kg -100 kg or 10 -100	6
> 100 kg or > 100 l	10

less than monthly 1 monthly 2 several times a month 4 several times a week 6 daily 10

c.) Frequency

> 100 kg or > 100 l	10
<u>Duration</u>	

< 0.5 h /day	1
0.5 – 1 hour /day	2
1-2 hours / day	4
2 - 4 hours / day	6
>4 hours / day	10

e.) Dustiness/Vapour Pressure

Solids	
Film-coated tablets, capsules	1
Pellets, tablet cores	2
Coarse-grained dust (e.g. sugar, salt)	4
Fine powdery dust (e.g. flour, toner)/ micronized powder	6

Liquids Boiling point or vapor pressure (at	: room temp.)
>150 °C or <0.5 kPa	1
100 to 150 °C or 0.5 to 5 kPa	2
50 to 100 °C or 5 to 25 kPa	4
< 50 °C or > 25 kPa	6

Sampling Results/ Quantitative Risk Assessment

- Quantitative Risk Assessment is used to measure airborne exposures to determine the risk posed by handling 1A & 1B CMR substances . The airborne levels measured are compared to the allowable exposure limit (e. g. OEL, TLV, PEL) to confirm the exposure risk is managed to levels below the limit.

- **Data Analysis:** An industry best practice includes a minimum of three air samples collected for the task duration of the work activity. Industrial hygiene data analyzed using IH statistics software or descriptive statistical tool; targeting the 95th percentile of the data.

	Air Sampling Results - Personal																				
Chemi	ical	Product	/ process	Sampling	Sampling	Results	8 Hour TWA					Comr	nents								
				Date	Time (min)	(ppm)	(ppm)														
																				I	
							Sum	mary of I	Data												
8 HOUF I WA	Number of samples	Mean (ppm)	Range (ppm)	Average Sampling Time (min)	Air Sampling Time Range (min)	UTL 95, 95 (statistical analysis)								Conclu	usions						
Task Duration																					
8 Hour TWA																					

Control of Hazards

- Always start evaluating if you can eliminate or substitute CMR substance
- Utilizing statistical analysis (e. g. Descriptive Statistics) of industrial hygiene personal exposure data, the operating company should establish, implement, and maintain a plan to reduce and/or control employee exposures to CMR substances below the allowable exposure limit.

Medical Surveillance

- To determine fitness for duty
- To identify the potential health effects due to possible occupational exposure to harmful substances or agents
- Based on site risk assessment (indicated the exposures from IH monitoring or qualitative assessment are above OEL)
- Check local legislation to determine medical surveillance requirements

Training

- Personnel working with CMR should receive initial training prior to working with chemicals and periodically thereafter.
- Records of conducted training must be kept on file and should include an outline of the topics covered. Training should include at a minimum:
 - \checkmark The hazards/ toxicological effects associated with the CMR being used.
 - \checkmark Proper methods and techniques for the safe use of the CMR substances.
 - ✓ Site medical surveillance process, including appropriate baseline, periodic, exit and post exposure evaluations
 - ✓ Decontamination practices and procedures (for both emergency and routine use)
 - ✓ Emergency practices and procedures.
 - \checkmark A review of the SOPs and safety data sheets.
 - ✓ Containers, packages and installations containing carcinogens, mutagens or reprotoxins are clearly and legibly labelled, and that warning signs are clearly displayed.

Solvent Selection Guide (Example)

Family	Solvent	BP (°C)	FP (°C)	Worst H3xx ^a	H4xx	Safety score	Health score	Env. score	Ranking by default	Ranking after discussion ^b
Water	Water	100	na	None	None	1	1	1	Recommended	Recommended
Alcohols	MeOH	65	11	H301	None	4	7	5	Problematic	Recommended
	EtOH	78	13	H319	None	4	3	3	Recommended	Recommended
	i-PrOH	82	12	H319	None	4	3	3	Recommended	Recommended
	n-BuOH	118	29	H318	None	3	4	3	Recommended	Recommendee
	t-BuOH ^c	82	11	H319	None	4	3	3	Recommended	Recommendee
	Benzyl alcohol	206	101	H302	None	1	2	7	Problematic	Problematic
	Ethylene glycol	198	116	H302	None	1	2	5	Recommended	Recommendee
Ketones	Acetone	56	-18	H319	None	5	3	5	Problematic	Recommende
	MEK	80	-6	H319	None	5	3	3	Recommended	Recommende
	MIBK	117	13	H319	None	4	2	3	Recommended	Recommended
	Cyclohexanone	156	43	H332	None	3	2	5	Recommended	Problematic
Esters	Methyl acetate	57	-10	H302	None	5	3	5	Problematic	Problematic
	Ethyl acetate	77	-4	H319	None	5	3	3	Recommended	Recommendee
	i-PrOAc	89	2	H319	None	4	2	3	Recommended	Recommended
	n-BuOAc	126	22	H336	None	4	2	3	Recommended	Recommendee
Ethers	Diethyl ether	34	-45	H302	None	10	3	7	Hazardous	HH
	Diisopropyl ether	69	-28	H336	None	9	3	5	Hazardous	Hazardous
	MTBE	55	-28	H315	None	8	3	5	Hazardous	Hazardous
	THF	66	-14	H351	None	6	7	5	Problematic	Problematic
	Me-THF	80	-11	H318	None	6	5	3	Problematic	Problematic
	1,4-Dioxane	101	12	H351	None	7	6	3	Problematic	Hazardous
	Anisole	154	52	None	None	4	1	5	Problematic	Recommende
	DME	85	-6	H360	None	7	10	3	Hazardous	Hazardous
Hydrocarbons	Pentane	36	-40	H304	H411	8	3	7	Hazardous	Hazardous
	Hexane	69	-22	H361	H411	8	7	7	Hazardous	Hazardous
	Heptane	98	-4	H304	H410	6	2	7	Problematic	Problematic
	Cyclohexane	81	-17	H304	H410	6	3	7	Problematic	Problematic
	Me-cyclohexane	101	-4	H304	H411	6	2	7	Problematic	Problematic
	Benzene	80	-11	H350	None	6	10	3	Hazardous	HH
	Toluene	111	4	H351	None	5	6	3	Problematic	Problematic
	Xylenes	140	27	H312	None	4	2	5	Problematic	Problematic
Halogenated	DCM	40	na	H351	None	1		7	Hazardous	Hazardous
	Chloroform	61	na	H351	None	2	-	5	Problematic	HH
	CCl4	77	na	H351	H420	2		10	Hazardous	HH
	DCE	84	13	H350	None	4	10	3	Hazardous	нн
	Chlorobenzene	132	29	H332	H411	3	2	7	Problematic	Problematic
	Acetonitrile	82	2	H319	None	4	3	3	Recommended	Problematic
Aprotic polar	DMF	153	58	H360	None	3	9	5	Hazardous	Hazardous
	DMAc	166	70	H360	None	1	9	5	Hazardous	Hazardous
	NMP	202	96	H360	None	1			Hazardous	Hazardous
	DMPU	246	121	H361	None	1	6	7	Problematic	Problematic
	DMF0	189	95	None	None	1		5	Recommended	Problematic
	Sulfolane	287	177	H360	None	1	9		Hazardous	Hazardous
	HMPA	>200	144		None	1	9	<u> </u>	Hazardous	
				H350				2		HH HH
Miscellaneous	Nitromethane	101	35	H302	None	10	2	3	Hazardous	
	Methoxy-ethanol	125	42	H360	None	3	9	3	Hazardous	Hazardous
A stille	Carbon disulfide	46	-30	H361	H412	9	-	-	Hazardous	нн
Acids	Formic acid	101	49	H314	None	3		3	Problematic	Problematic
	Acetic acid	118	39	H314	None	3		3	Problematic	Problematic
	Ac_2O	139	49	H314	None	3		3	Problematic	Problematic
Amines	Pyridine	115	23	H302	None	4	2	3	Recommended	Hazardous
	TEA	89	-6	H314	None	6	7	3	Problematic	Hazardous

CMR Exposure Control Summary

CMR Exposure Control

- 1. Written CMR exposure control procedure -Describing the site risk management of GHS defined category 1A and/or 1B carcinogens, mutagens, reprotoxins
- 2. Chemical Identification
- 3. Chemical Approvals
- 4. Designated Use area Areas where quantitative risk assessments identify exposure risk above the OEL values should have restricted access for 'Authorized personnel only'
- 5. Process or experiment description
- 6. Risk Assessment Qualitative, Quantitative, Data Analysis

7. Control Hazards – General, Engineering controls, Administrative control & PPE, Special Handling & Storage, Spill Control & Reporting, Waste Disposal, Maintenance procedures, Decontamination

- 8. Medical Surveillance
- 9. Training

CMR Exposure Control – Takeaways

- Removal of the CMR substances at the source appropriate local and general ventilation as needed
- Good design of work processes and engineering controls to avoid or minimize the release of CMR substances (work as closed as possible - avoid open handling)
- Collective protection measures and/or, where exposure cannot be avoided by other means, individual protection measures
- Good hygiene practices! (in particular regular cleaning of floors, walls and other surfaces)
- Clearly trace / indicate zone where CMR substances are handled
- Make up emergency plan how to deal with emergencies likely to result in abnormally high exposure of CMR substances
- Means for safe storage (e.g. keep CMR substances separated from flammables), handling and transportation, using sealed and clearly and visibly labeled containers
- Means for safe collection, storage and disposal of **waste**, including use of sealed, clearly and visibly labeled containers
- People who work with CMR substances need to receive appropriate **medical checks** (goal: early detection)
- All people need to be well **informed** and **trained** specifically to work with CMR substances

Thanks!

CONTACT

For more information about the PSCI please contact:

PSCI Secretariat

Carnstone Partners Ltd Durham House Durham House Street London WC2N 6HG

info@pscinitiative.org

+44 (0) 7794 557524

About the Secretariat

Carnstone Partners Ltd is an independent management consultancy, specialising in corporate responsibility and sustainability, with a long track record in running industry groups.

